

Strickland Metals Limited
ACN 109 361 195
info@stricklandmetals.com.au
www.stricklandmetals.com.au

Postal & Registered Office +61 (8) 6317 9875 Level 4, 15 Ogilvie Road Mt Pleasant WA 6153

13 November 2023

EXPLORATION UPDATE – DIAMOND DRILLING AND KONIK

DIAMOND DRILLING INTERSECTS DOWN-DIP STRUCTURE OF DISCOVERY HOLE HWAC1472

Key Points:

- MWDD001-004 have now been completed and the fifth diamond hole (MWDD005) is currently underway (Figure 1)
- MWDD001 and MWDD003 both intersected significant shearing, veining, sulphides and alteration interpreted to be down dip extensions of the discovery hole HWAC1472: 31m @ 5.6g/t Au to BOH
- MWDD002 was drilled 40m south of HWAC1472 and intersected similar degrees of veining and alteration to that observed in the discovery hole
- MWDD004 was drilled 80m south of MWDD003 and again intersected the same geological units as seen in MWDD001 and MWDD003
- Holes MWDD001, 003 and 004 were all extended beyond initial planned depths due to ongoing intersections of prospective alteration and veining
- The magnetic inversion model has been particularly accurate in predicting the targeted geological units, as well as increasing intensity of shearing, veining, sulphide abundance and alteration
- Samples from MWDD001 were delivered to the laboratory over the weekend
- Separately, aircore results from Konik have identified a ~450m long anomalous gold trend
- Strickland remains extremely well-funded after completing its sale of the Millrose gold deposit to Northern Star Resources Ltd in July 2023 for ~\$61million

Introduction

Strickland Metals Limited (ASX:STK) (**Strickland** or the **Company**) is pleased to provide an update on its 100% owned Horse Well prospect at the Yandal Gold Project.

Andrew Bray, Chief Executive Officer, said: "The Company has successfully completed the first four diamond holes from its ongoing drilling at Marwari. All four holes have intersected the target stratigraphy, albeit over greater widths than initially anticipated.

Intense alteration, veining and shearing (intercalated BIF and intermediate volcaniclastic units) was intersected from 128m to 205m in MWDD001, with an additional wider and more intense zone intersected across the down-dip extension in MWDD003 from 180m to 270m. The geology, alteration and veining match up with the aircore results reported in the original discovery hole up-dip HWAC1472: 31m @ 5.6g/t Au from 72m to BOH.

The same unit has also been intersected 80m along strike in MWDD004 from 182m to 261m, with similar visual observations to MWDD003.

Structural measurements from the core show the main geological unit is sub-vertical, dipping 81 degrees to the east, meaning the drilling is being undertaken with the correct orientation.

As per ASX Guidance and Compliance Update no 04/23, the Company stresses that these are only visual observations of core and do not constitute assays, and it is not expected that the entirety of the alteration zones will be mineralised. There is no way of knowing any gold grades (if any) until assays are received. However, given the size of the units intersected down dip from the high-grade discovery hole; the fact that the same unit has now been intersected 80m along strike; and the apparent accuracy of the magnetic inversion model, Strickland is of the view that these visual observations warrant reporting.

Further updates will be provided as soon as they are available."

Diamond Dilling

The first four diamond holes drilled at Marwari have all successfully intersected the targeted stratigraphy. MWDD001 and 003 were drilled as step-back holes from the discovery hole in HWAC1472: 31m @ 5.6g/t Au from 72m to BOH.

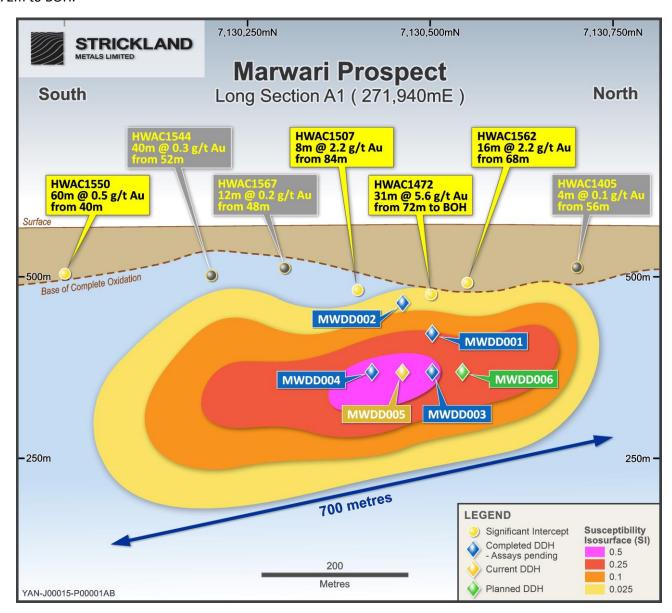


Figure 1: Marwari Long Section (looking west): Highlighting the completed, current and planned diamond drill hole intercepts positions, in relation to the modelled magnetic inversion model and previously reported aircore assays.

MWDD001 intersected strong alteration (hematite, carbonate, chlorite and in places, sericite), veining and sulphides from approximately 128m to 205m in MWDD001 (Figure 2). Intercalated BIF and intermediate volcaniclastics continued to 230m. The footwall intersection, ending at 270m, comprised conglomerate and finer grained metasediments, notably still with strong silica and carbonate alteration, shearing, and brecciation with pyrite. These visual intersections are what informed the Company's decision to extend MWDD001 to 291m, as announced to the market on 3 November 2023.

The main alteration styles seen in drilling to date include:

- Silica-carbonate-pyrite flooding associated with the most intense (mylonitic) sheared zones.
- Carbonate-pyrite-hematite associated with carbonate-chlorite veining.

Figure 2: MWDD001 drill core (125.3m to 125.5m) - brecciated SIF unit with approximately 4% sulphide content proximal to 15% quartz carbonate veining

MWDD003, drilled 40m stepping back from MWDD001, was completed at 318m depth. It intersected broadly the same shearing, alteration, veining and sulphides as observed in MWDD001, albeit over a wider intersection from 180m to 270m, and with stronger quartz carbonate veining, alteration and sulphide. The most visually impressive parts within this broader intersection was observed between 203.8 to 220.9m (Figure 3) and 239.9 to 259.6m.

The broad zones of alteration and veining from both holes are interpreted to be the down dip extensions of HWAC1472.

Figure 3: MWDD003 drill core (208.2 to 208.5m) – intense quartz carbonate veining (approximately 10%) with 3% pyrite content

MWDD004 intersected the same style of alteration and veining as observed in MWDD003 from 182 to 261m. The most impressive, localised sections of intense veining and sulphide content were observed between 187.5 to 199m, 246.7 to 251m and a zone of quartz carbonate pyrite breccia (up to 20% pyrite sulphides) observed between 259.5 and 260.7m (Figure 4). Alteration and veining then decreases to 286m.

Figure 4: MRDD004 drill core (260.45 to 260.7m), showing intense quartz carbonate veining (50% quartz carbonate veining) with approximately 20% pyrite content.

MWDD002 was drilled 40m south from discovery hole HWAC1472 and was designed to target shallower mineralisation. The upper part of the hole intersected veining in the BIF and saprock, which correlates well with the oxide gold grades intersected in HWAC1472 (Figure 5). Drilling in the fresh BIF, intercalated with intermediate volcaniclastics, occurred from 120-141m, with variable veining, sulphides and alteration concentrated around veins and structures. A notable zone of intense shearing, with approximately 20% quartz veining, 5% pyrite and hematite-sericite-chlorite alteration, was intersected from 137.2-141m.

Structural measurements from MWDD002 provided the necessary stratigraphic information to infer the geometry of the main BIF body at its lower contact, estimated to be dipping 81 degrees to the east.

Figure 5: MWDD002 drill core (103.5 to 106.3m) showing a zone of dense (estimated 20%) boudinaged, vuggy, quartz carbonate veining with 5% ex sulphide content within the BIF saprock. This intersection is a 40m projection south from discovery hole HWAC1472.

The Company provides the following Cautionary Statement as per ASX Guidance and Compliance Update no. 04/23:

Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

Other Drilling

New demagnetised zone north of Marwari: a new zone of particular interest between Marwari and Chetak has been identified. The BIF appears to be demagnetised at the intersection of a major NE trending fault structure, representing potentially a very fertile area for additional mineralisation. Strong mineralisation in this demagnetised area would be consistent with the geological model the Company is currently operating under. This will be a priority for RC drill testing early in the new year (Figure 6).

Ongoing RC drilling: RC drilling is ongoing with the Company currently completing an initial 21 holes at Marwari then 12 holes at Chetak.

Great Western: ethnographic heritage clearance has been received for the Great Western gold target (see ASX announcement 1 September 2023). Two RC fence lines will be drilled across the prospect as part of an initial program. This drilling is scheduled to commence in early December and will be completed as the final part of the 2023 RC program.

Aircore drilling: the 50,000m aircore drilling program remains ongoing. This is expected to be completed by the end of the month.

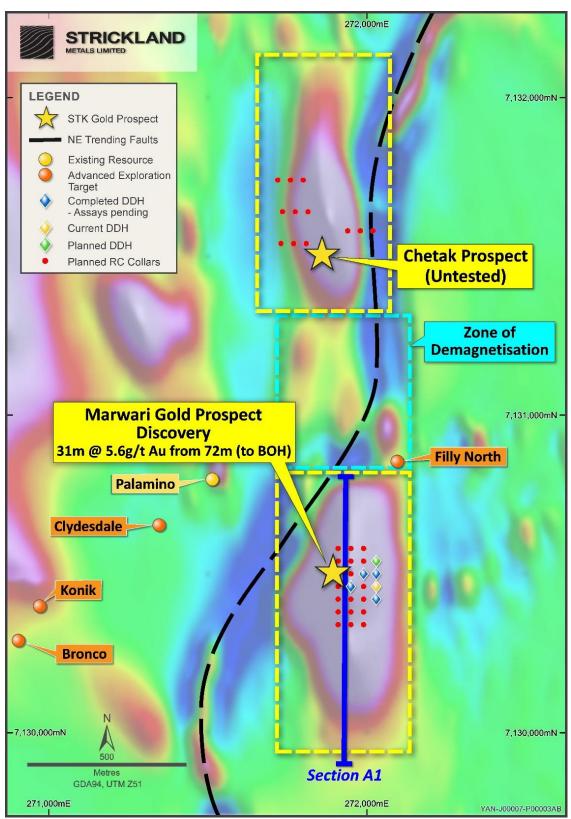


Figure 6: Topographic section showing the location of both the Marwari and Chetak prospects in relation to the zone of demagnetisation (Magnetic – TMI-RTP-1VD image underlay)

Konik aircore results

A number of aircore holes were completed along strike from the Konik discovery announced to the market on 2 October 2023 in HWAC1488: 58m @ 1.7g/t Au from 17m.

In much the same way as the subsequent aircore drilling at Marwari, the rig was not able to penetrate into fresh rock to effectively test the targeted structure. Despite this, a 450m long anomalous, shallow gold trend has been delineated.

Konik sits along a NW-striking shear zone marked by magnetic highs, and is intersected by a NE-striking fault structure. Anomalous mineralisation (>0.5g/t Au) has been intersected over the entire 1.1km tested of the Konik structure. The region immediately surrounding the NE structure intersection has an increase in mineralisation for a strike of ~450m.

The interpreted ore zone appears to be west dipping, meaning the discovery hole in HWAC1488 was drilled oblique to the mineralisation. The estimated true width of the ore zone in fresh rock is approximately 15m. Gold is hosted in quartz-pyrite veining and has associated intense shearing and moderate silica alteration. There remains strong potential for stacked lodes throughout the prospect area.

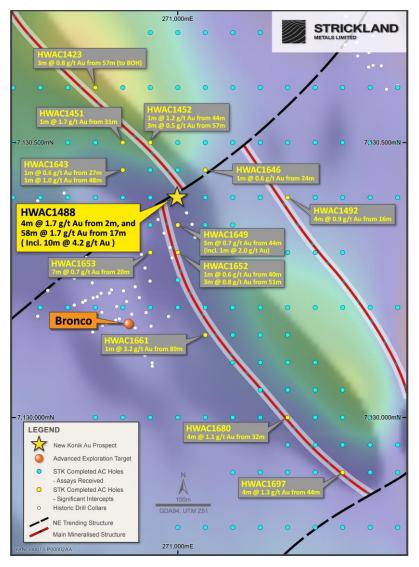


Figure 7: Topographic image showing Konik aircore anomalism

As aircore drilling proved largely ineffective in penetrating deep enough across the structure to successfully test the targeted zones, follow up RC drilling is required.

The Company will return to test Konik during 2024 with a systematic RC campaign.

A table of significant intercepts is provided in Appendix A.

Assay timing on diamond holes

As per ASX Guidance and Compliance Update no 04/23, the following timings are provided as estimates of return of assays for MWDD001-004:

- **MWDD001** was delivered to the laboratory on Saturday 11 November 2023. The Company has requested these assays be rushed through and prioritised. Should the laboratory be able to provide the priority service, the assays are expected in approximately three weeks. If the priority service is not available, assays are expected after six weeks.
- MWDD002 and MWDD003 are being currently processed on site and will be dispatched to Perth this coming Friday, 17 November 2023. They will be delivered to the laboratory next Saturday and priority assaying will be requested. The same timings apply to assay turnaround times as above.
- MWDD004 was completed during the night shift of 12 November 2023. This hole will be processed later this week and next week, and will be dispatched to Perth on 24 November 2023. Priority assaying will be requested. The same timings apply to assay turnaround times as above.

This release has been authorised by the Chief Executive Officer.

For more information contact

Andrew Bray

Chief Executive Officer Phone: +61 (8) 6317 9875 <u>info@stricklandmetals.com.au</u> <u>stricklandmetals.com.au</u>

Competent Person Statement

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled or reviewed by Mr Richard Pugh who is the Strickland Metals Limited Geology Manager and is a current Member of the Australian Institute of Geoscientists (AIG). Mr Richard Pugh has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pugh consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Appendix A – Drilling Results

Table 1: Yandal Project Diamond Drilling November 2023

	GDA94 Zone 51 Coordinates									Visible gold	
				Hole						observed	
Hala ID	Easting	Northing	RL (m)	Depth	Dip/Azi	From	To	Width	Au (~(*)	in drill	Chahan
Hole ID	(m)	(m)	(m)	(m)	(°)	(m)	(m)	(m)	(g/t)	core	Status
											Completed - core has been processed with samples currently at the laboratory
MWDD001	271950	7130500	514	291.1	-60/270					0%	pending assay
		7130460									Completed - core is currently being
MWDD002	271950	7130460	514	167.8	-60/270					0%	processed
		7130500									Completed - core is currently being
MWDD003	272030	7130300	514	318	-60/270					0%	processed
											Completed - core is currently being
MWDD004	272030	7130420	514	303.2	-60/270					0%	processed
MWDD005	272030	7130460	514	TBC	-60/270					N/A	Drilling is ongoing
MWDD006	272030	7130540	514	TBC	-60/270					N/A	Planned

Table 2: Konik Significant Intercepts

Hole ID	Domain	Depth From (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/Comments
HWAC1423	Transition	57	60	3	0.8	3 metres @ 0.8g/t Au from 57 metres to BOH
HWAC1424	Oxide	29	30	1	0.6	1 metre @ 0.6g/t Au from 29 metres
and	Oxide	43	44	1	0.7	1 metre @ 0.7g/t Au from 43 metres
HWAC1450	Oxide	37	38	1	0.5	1 metre @ 0.5g/t Au from 37 metres
HWAC1451	Oxide	31	32	1	1.7	1 metre @ 1.7g/t Au from 31 metres
HWAC1452	Oxide	44	45	1	1.2	1 metre @ 1.2g/t Au from 44 metres
and	Transition	57	60	3	0.5	3 metres @ 0.5g/t Au from 57 metres
HWAC1488	Laterite	2	6	4	1.7	4 metres @ 1.7g/t Au from 2 metres
and	Oxide	11	12	1	0.7	1 metre @ 0.7g/t Au from 11 metres
and	Oxide	17	75	58	1.7	58 metres @ 1.7g/t Au from 17 metres (incl. 10 metres
including	Transition	60	70	10	4.2	@ 4.2g/t Au from 60 metres) to BOH
HWAC1492	Oxide	16	20	4	0.9	4 metres @ 0.9g/t Au from 16 metres
and	Oxide	24	32	8	0.5	8 metres @ 0.5g/t Au from 24 metres
and	Oxide	36	44	8	0.5	8 metres @ 0.5g/t Au from 36 metres
HWAC1530	Oxide	32	36	4	0.5	4 metres @ 0.5g/t Au from 32 metres
HWAC1643	Oxide	27	28	1	0.6	1 metre @ 0.6g/t Au from 27 metres
and	Oxide	48	49	1	1	1 metre @ 1g/t Au from 48 metres
and	Transition	70	71	1	0.5	1 metre @ 0.5g/t Au from 70 metres
HWAC1646	Oxide	24	25	1	0.6	1 metre @ 0.6g/t Au from 24 metres
HWAC1649	Oxide	44	49	5	0.7	5 metres @ 0.7g/t Au from 44 metres (incl. 1 metre @
including	Oxide	44	45	1	2.0	2.0g/t Au from 44 metres)
and	Oxide	65	67	2	0.6	2 metres @ 0.6g/t Au from 65 metres
HWAC1652	Oxide	40	41	1	0.6	1 metre @ 0.6g/t Au from 40 metres
and	Oxide	51	54	3	0.8	3 metres @ 0.8g/t Au from 51 metres
HWAC1653	Oxide	20	27	7	0.7	7 metres @ 0.7g/t Au from 20 metres
HWAC1661	Transition	89	90	1	3.2	1 metre @ 3.2g/t Au from 89 metres
HWAC1680	Oxide	32	36	4	1.1	4 metres @ 1.1g/t Au from 32 metres
HWAC1697	Oxide	44	48	4	1.3	4 metres @ 1.3g/t Au from 44 metres

^{*}Significant intercepts were based on a single metre intercept grading greater than 0.5 g/t $\rm Au.$

Table 3: 2023 Horse Well AC drill results received to date

	Coordina	tes (MGA94 Zo	one 51)				Total	Depth	Depth			
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Depth (m)	From (m)	To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/Comments
HWAC1275	270450	7131400	560	AC	270	-60	62	, ,	, ,			NSA
HWAC1276	270500	7131400	560	AC	270	-60	58					NSA
HWAC1277	270550	7131400	560	AC	270	-60	64					NSA
HWAC1278	270600	7131400	560	AC	270	-60	62					NSA
HWAC1279	270650	7131400	560	AC	270	-60	73					NSA
HWAC1280	270700	7131400	560	AC	270	-60	65					NSA
HWAC1281	270750	7131400	560	AC	270	-60	78					NSA
HWAC1282	270800	7131400	560	AC	270	-60	66					NSA
HWAC1283 HWAC1284	270850 270900	7131400 7131400	560 560	AC AC	270 270	-60 -60	64 54					NSA NSA
HWAC1285	270950	7131400	560	AC	270	-60	66					NSA
HWAC1286	271000	7131400	560	AC	270	-60	56					NSA
HWAC1287	271050	7131400	560	AC	270	-60	45					NSA
HWAC1288	271100	7131400	560	AC	270	-60	72					NSA
HWAC1289	271150	7131400	560	AC	270	-60	78					NSA
HWAC1290	271200	7131400	560	AC	270	-60	90					NSA
HWAC1291	271250	7131400	560	AC	270	-60	91					NSA
HWAC1292	271300	7131400	560	AC	270	-60	75					NSA
HWAC1293	271350	7131400	560	AC	270	-60	81					NSA
HWAC1294	271400	7131400	560	AC	270	-60	85					NSA
HWAC1295	271450	7131400	560	AC	270	-60	63	<u> </u>				NSA
HWAC1296	271550	7131400	560	AC	270	-60	84					NSA
HWAC1297	271650	7131400	560	AC	270	-60	91	 				NSA NSA
HWAC1298 HWAC1299	271750 272050	7131400 7131300	560 560	AC AC	270 270	-60 -60	81 91	-				NSA NSA
HWAC1300	272100	7131300	560	AC	270	-60	61					NSA NSA
HWAC1300	272100	7131300	560	AC	270	-60	81					NSA NSA
HWAC1302	272200	7131300	560	AC	270	-60	65	55	56	1	4.9	1 metre @ 4.9g/t Au from 55 metres
HWAC1303	270450	7131200	560	AC	270	-60	57					NSA
HWAC1304	270500	7131200	560	AC	270	-60	70					NSA
HWAC1305	270550	7131200	560	AC	270	-60	64					NSA
HWAC1306	270600	7131200	560	AC	270	-60	70					NSA
HWAC1307	270650	7131200	560	AC	270	-60	68					NSA
HWAC1308	270700	7131200	560	AC	270	-60	79					NSA
HWAC1309	270750	7131200	560	AC	270	-60	95					NSA
HWAC1310	270800	7131200	560	AC	270	-60	77					NSA
HWAC1311	270850	7131200	560	AC	270	-60	68	66	67	1	0.6	1 metre @ 0.6g/t Au from 66 metres
HWAC1312	270900	7131200	560	AC	270	-60	69	44	45	1	1.0	1 metre @ 1.0g/t Au from 44 metres
HWAC1313 HWAC1314	270950 271000	7131200 7131200	560 560	AC AC	270 270	-60 -60	77 73					NSA NSA
HWAC1314	271000	7131200	560	AC	270	-60	76					NSA NSA
HWAC1315	271030	7131200	560	AC	270	-60	69					NSA
HWAC1317	271150	7131200	560	AC	270	-60	75					NSA
HWAC1318	271200	7131200	560	AC	270	-60	85	39	40	1	1.6	1 metre @ 1.6g/t Au from 39 metres
HWAC1319	271250	7131200	560	AC	270	-60	91					NSA
HWAC1320	271300	7131200	560	AC	270	-60	102	63	64	1	0.6	1 metre @ 0.6g/t Au from 63 metres
HWAC1321	271350	7131200	560	AC	270	-60	87	38	39	1	1.0	1 metre @ 1.0g/t Au from 38 metres
HWAC1322	271400	7131200	560	AC	270	-60	79					NSA
HWAC1323	271450	7131200	560	AC	270	-60	75					NSA
HWAC1324	271550	7131200	560	AC	270	-60	69					NSA
HWAC1325	271650	7131200	560	AC	270	-60	107	-				NSA NSA
HWAC1326	271750	7131200	560	AC	270 270	-60	97 77	+				NSA NSA
HWAC1327 HWAC1328	272050 272150	7131200 7131200	560 560	AC AC	270	-60 -60	68	 	-			NSA NSA
HWAC1328	272150	7131200	560	AC	270	-60	72	 				NSA NSA
HWAC1329	270500	7131000	560	AC	270	-60	72	t				NSA
HWAC1331	270550	7131000	560	AC	270	-60	94					NSA
HWAC1332	270600	7131000	560	AC	270	-60	80					NSA
HWAC1333	270650	7131000	560	AC	270	-60	72					NSA
HWAC1334	270700	7131000	560	AC	270	-60	71	47	48	1	1.8	1 metre @ 1.84g/t Au from 47 metres
HWAC1335	270750	7131000	560	AC	270	-60	69					NSA
HWAC1336	270800	7131000	560	AC	270	-60	42					NSA
HWAC1337	270850	7131000	560	AC	270	-60	72					NSA
HWAC1338	270900	7131000	560	AC	270	-60	72					NSA
HWAC1339	270950	7131000	560	AC	270	-60	77					NSA
HWAC1340	271000	7131000	560	AC	270	-60	96	46	47	1	1.4	1 metre @ 1.35g/t Au from 46 metres
HWAC1341	271050	7131000	560	AC	270	-60	76			_		NSA
HWAC1342	271100	7131000	560	AC	270	-60	81	40	44	4	0.6	4 metres @ 0.62g/t Au from 40 metres
HWAC1343	271150	7131000	560	AC	270	-60	84	1	-			NSA NSA
HWAC1344 HWAC1345	271200	7131000	560	AC	270	-60	76	30	35	5	0.7	NSA
including	271250	7131000	560	AC	270	-60	78	30	35	1	1.9	5 metres @ 0.7g/t Au from 30 metres (incl. 1 metre @ 1.9g/t Au from 30 metres)
and	2,1230	,131000	330	AC	270	30	,,,	38	39	1	1.6	1 metre @ 1.6g/t Au from 38 metres
unu		1	l	L		l	1	30	33	1 +	1.0	2 metre @ 1.06/ (Au nom 30 metres

	Coordina	tes (MGA94 Zo	ano E1\				Total	Donath	Donath			
Hole ID	Easting	Northing		Hole Type	Azi (deg)	Dip (deg)	Total Depth	Depth From	Depth To	Intercept Width (m)	Grade (g/t)	Grade Summary/Comments
	(m)	(m)	RL (m)	Туре	(ueg)	(ueg)	(m)	(m)	(m)			
and HWAC1346	271300	7131000	560	AC			85	48	55	7	0.5	7 metres @ 0.5g/t Au from 48 metres NSA
HWAC1347								12	14	2	0.8	2 metres @ 0.8g/t Au from 12 metres
and	271350	7131000	560	AC	270	-60	73	32	33	1	1.0	1 metre @ 1.0g/t Au from 32 metres
HWAC1348								20	21	1	1.0	1 metre @ 1.0g/t Au from 20 metres
and	271400	7131000	560	AC	270	-60	61	24	27	3	0.7	3 metres @ 0.7g/t Au from 24 metres (incl. 1
including							-	26	27	1	1.3	metre @ 1.3g/t Au from 26 metres)
and HWAC1349	271450	7131000	560	AC	270	-60	90	33	38	5	0.8	5 metres @ 0.8g/t Au from 33 metres NSA
HWAC1350	271550	7131000	560	AC	270	-60	44					NSA
HWAC1351	271650	7131000	560	AC	270	-60	109					NSA
HWAC1352	271750	7131000	560	AC	270	-60	103					NSA
HWAC1353	272150	7131000	560	AC	270	-60	99					NSA
HWAC1354	272250	7131000	560	AC	270 270	-60	52 93	34	25	1	1.5	NSA
HWAC1355 HWAC1356	272050 272100	7131100 7131100	560 560	AC AC	270	-60 -60	52	34	35	1	1.5	1 metre @ 1.5g/t Au from 34 metres NSA
HWAC1357	272150	7131100	560	AC	270	-60	90					NSA
HWAC1358	272200	7131100	560	AC	270	-60	85					NSA
HWAC1359	272250	7131100	560	AC	270	-60	72					NSA
HWAC1360	270500	7130800	560	AC	270	-60	73					NSA
HWAC1361 HWAC1362	270550	7130800	560 560	AC AC	270 270	-60 -60	61 63	1				NSA NSA
HWAC1362 HWAC1363	270600 270650	7130800 7130800	560 560	AC AC	270	-60 -60	63	 				NSA NSA
HWAC1364	270700	7130800	560	AC	270	-60	67					NSA
HWAC1365	270750	7130800	560	AC	270	-60	67	45	46	1	0.8	1 metre @ 0.8g/t Au from 45 metres
HWAC1376	271300	7130800	560	AC	270	-60	100	52	56	4	7.8	4 metres @ 7.8g/t Au from 52 metres
HWAC1377								32	44	12	0.9	12 metres @ 0.9g/t Au from 32 metres (incl. 4
including	271350	7130800	560	AC	270	-60	104	72	<i>44</i> 80	8	1.4 1.3	metres @ 1.4g/t Au from 40 metres)
and and								88	92	4	0.5	8 metres @ 1.3g/t Au from 72 metres 4 metres @ 0.5g/t Au from 88 metres
HWAC1378	271400	7130800	560	AC	270	-60	68	- 00	32	-	0.5	NSA
HWAC1379								45	48	3	0.5	3 metres @ 0.5g/t Au from 45 metres
and	271450	7130800	560	AC	270	-60	73	54	55	1	0.7	1 metres @ 0.7g/t Au from 54 metres
HWAC1380								0	1	1	0.7	1 metre @ 0.7g/t Au from 0 metres
and	274500	7420000	550		270			14	15	1	0.8	1 metre @ 0.8g/t Au from 14 metres
and	271500	7130800	560	AC	270	-60	69	21	22	1 39	0.7 6.1	1 metre @ 0.7g/t Au from 21 metres
and including								25 45	64 52	7	22.2	39 metres @ 6.1g/t Au from 25 metres (incl. 7 metres @ 22.2g/t Au from 45 metres)
HWAC1381	271550	7130800	560	AC	270	-60	113		52			NSA
HWAC1382	271650	7130800	560	AC	270	-60	84					NSA
HWAC1383	271750	7130800	560	AC	270	-60	106					NSA
HWAC1384	271850	7130800	560	AC	270	-60	51					NSA
HWAC1385 HWAC1386	271950 272050	7130800 7130800	560 560	AC AC	270 270	-60 -60	82 95					NSA NSA
HWAC1387	272030	7130800	560	AC	270	-60	91					NSA
HWAC1388	272250	7130800	560	AC	270	-60	64					NSA
HWAC1389	272300	7130800	560	AC	270	-60	51					NSA
HWAC1390	271800	7130900	560	AC	270	-60	126					NSA
HWAC1391	271850	7130900	560	AC	270	-60	91					NSA
HWAC1392	271900	7130900	560	AC	270	-60	95 80					NSA NSA
HWAC1393 HWAC1394	271950 272000	7130900 7130900	560 560	AC AC	270 270	-60 -60	49					NSA NSA
HWAC1395	272050	7130900	560	AC	270	-60	46	1				NSA
HWAC1396	272100	7130900	560	AC	270	-60	64	20	24	4	0.7	4 metres @ 0.7g/t Au from 20 metres
HWAC1397	272150	7130900	560	AC	270	-60	54					NSA
HWAC1398	272200	7130900	560	AC	270	-60	51	ļ				NSA
HWAC1399	272250	7130900	560	AC	270	-60	61	-				NSA
HWAC1400 HWAC1401	271700 271750	7130700 7130700	560 560	AC AC	270 270	-60 -60	90 77	-				NSA NSA
HWAC1401	271750	7130700	560	AC	270	-60	48	-				NSA NSA
HWAC1403	271850	7130700	560	AC	270	-60	86	1				NSA
HWAC1404	271900	7130700	560	AC	270	-60	105					NSA
HWAC1405	271950	7130700	560	AC	270	-60	96					NSA
HWAC1406	272000	7130700	560	AC	270	-60	117	28	32	4	0.5	4 metres @ 0.5g/t Au from 28 metres
HWAC1407	272050	7130700	560	AC	270	-60	108	-				NSA
HWAC1408 HWAC1409	272100 272150	7130700 7130700	560 560	AC AC	270 270	-60 -60	87 56	1				NSA NSA
HWAC1409 HWAC1410	272150	7130700	560	AC AC	270	-60 -60	56	 				NSA NSA
HWAC1411	272250	7130700	560	AC	270	-60	42	<u> </u>				NSA NSA
HWAC1412	272300	7130700	560	AC	270	-60	45					NSA
HWAC1413	270950	7130700	560	AC	270	-60	65					NSA
HWAC1414	271000	7130700	560	AC	270	-60	64					NSA
HWAC1415	271050	7130700	560	AC	270	-60	71	37	38	1	0.8	1 metre @ 0.8g/t Au from 37 metres
HWAC1416	271100	7130700	560	AC	270	-60	77	<u> </u>				NSA
HWAC1417	271150	7130700	560	AC AC	270	-60	75 66	1				NSA NSA
HWAC1418	270600	7130600	560	AC	270	-60	66	<u> </u>			l	NSA

				1								
Hole ID	Coordina Easting	tes (MGA94 Zo		Hole	Azi	Dip	Total Depth	Depth From	Depth To	Intercept	Grade	Grade Summary/Comments
	(m)	(m)	RL (m)	Туре	(deg)	(deg)	(m)	(m)	(m)	Width (m)	(g/t)	Crade Sammary, Comments
HWAC1419	270650	7130600	560	AC	270	-60	63					NSA
HWAC1420	270700	7130600	560	AC	270	-60	62					NSA
HWAC1421	270750	7130600	560	AC	270	-60	68					NSA
HWAC1422	270800 270850	7130600	560 560	AC AC	270 270	-60 -60	64 60	57	60	3	0.0	NSA
HWAC1423 HWAC1424	270850	7130600	300	AC	2/0	-60	60	29	60 30	1	0.8	3 metres @ 0.8g/t Au from 57 metres 1 metre @ 0.6g/t Au from 29 metres
and	270900	7130600	560	AC	270	-60	63	43	44	1	0.7	1 metre @ 0.7g/t Au from 43 metres
HWAC1425	270950	7130600	560	AC	270	-60	66			-	0.7	NSA
HWAC1426	271000	7130600	560	AC	270	-60	72	24	29	5	0.5	5 metres @ 0.5g/t Au from 24 metres
HWAC1427	271050	7130600	560	AC	270	-60	77					NSA
HWAC1428	271100	7130600	560	AC	270	-60	87					NSA
HWAC1429	271150	7130600	560	AC	270	-60	84					NSA
HWAC1430	271200	7130600	560	AC	270	-60	66					NSA
HWAC1431	271250	7130600	560	AC	270	-60	69	0	12	12	1.0	12 metres @ 1.0g/t Au from 0 metres
HWAC1432 HWAC1433	271300 271350	7130600 7130600	560 560	AC AC	270 270	-60 -60	73 57					NSA NSA
HWAC1434	271330	7130600	560	AC	270	-60	51	44	47	3	1.3	3 metres @ 1.3g/t Au from 44 metres
HWAC1435	271450	7130600	560	AC	270	-60	59		47	3	1.5	NSA
HWAC1436	271500	7130600	560	AC	270	-60	62					NSA
HWAC1437	271550	7130600	560	AC	270	-60	45					NSA
HWAC1438	271600	7130600	560	AC	270	-60	57	35	49	14	1.3	14 metres @ 1.3g/t Au from 35 metres
HWAC1439	271650	7130600	560	AC	270	-60	78	25	30	5	0.5	5 metres @ 0.5g/t Au from 25 metres
HWAC1440	271750	7130600	560	AC	270	-60	54	15	16	1	0.6	1 metre @ 0.6g/t Au from 15 metres
and								31	32	1	0.8	1 metre @ 0.8g/t Au from 31 metres
HWAC1441	271850	7130600	560	AC	270	-60	112		-			NSA NSA
HWAC1442	271950	7130600	560	AC	270	-60	110					NSA NSA
HWAC1443 HWAC1444	272050 272150	7130600 7130600	560 560	AC AC	270 270	-60 -60	128 121	37	38	1	0.6	NSA 1 metre @ 0.6g/t Au from 37 metres
HWAC1445	272250	7130600	560	AC	270	-60	55	3,	30	-	0.0	NSA
HWAC1446	270650	7130500	560	AC	270	-60	54					NSA
HWAC1447	270700	7130500	560	AC	270	-60	51					NSA
HWAC1448	270750	7130500	560	AC	270	-60	61					NSA
HWAC1449	270800	7130500	560	AC	270	-60	56					NSA
HWAC1450	270850	7130500	560	AC	270	-60	57	37	38	1	0.5	1 metre @ 0.5g/t Au from 37 metres
HWAC1451	270900	7130500	560	AC	270	-60	58	31	32	1	1.7	1 metre @ 1.7g/t Au from 31 metres
HWAC1452	270950	7130500	560	AC	270	-60	64	44	45	1	1.2	1 metre @ 1.2g/t Au from 44 metres
and	271000	7120500	F.C.O.	A.C.	270	60	C1	57 29	60 30	3	0.5 0.6	3 metres @ 0.5g/t Au from 57 metres
HWAC1453 HWAC1454	271000 271050	7130500 7130500	560 560	AC AC	270	-60 -60	61 90	48	49	1	0.6	1 metre @ 0.6g/t Au from 29 metres 1 metre @ 0.7g/t Au from 48 metres
HWAC1455	271030	7130300	300	AC	270	-00	30	64	65	1	0.8	1 metre @ 0.8g/t Au from 44 metres
and	271100	7130500	560	AC	270	-60	89	82	85	3	1.2	3 metres @ 1.2g/t Au from 82 metres
HWAC1456	271150	7130500	560	AC	270	-60	98					NSA
HWAC1457	271200	7130500	560	AC	270	-60	101					NSA
HWAC1458	271250	7130500	560	AC	270	-60	66	48	49	1	1.7	1 metre @ 1.7g/t Au from 48 metres
HWAC1459	271300	7130500	560	AC	270	-60	53					NSA
HWAC1460	271350	7130500	560	AC	270	-60	41	18	27	9	0.7	9 metres @ 0.7g/t Au from 18 metres
HWAC1461	271400	7130500	560	AC	270	-60	39					NSA NSA
HWAC1462 HWAC1463	271450 271500	7130500 7130500	560 560	AC AC	270 270	-60 -60	46 50					NSA NSA
HWAC1464	271550	7130500	560	AC	270	-60	57					NSA NSA
HWAC1465	271600	7130500	560	AC	270	-60	68					NSA
HWAC1466	271650	7130500	560	AC	270	-60	64	1				NSA
HWAC1467	271700	7130500	560	AC	270	-60	67					NSA
HWAC1468	271750	7130500	560	AC	270	-60	95					NSA
HWAC1469	271800	7130500	560	AC	270	-60	103	56	68	12	1.2	12 metres @ 1.2g/t Au from 56 metres
and	2,1000	,130300	300	AC	270	30	103	76	80	4	0.7	4 metres @ 0.7g/t Au from 76 metres
HWAC1470	271850	7130500	560	AC	270	-60	121	44	48	4	0.5	4 metres @ 0.5g/t Au from 44 metres
and								84	88	4	0.5	4 metres @ 0.5g/t Au from 84 metres
HWAC1471 HWAC1472	271900	7130500	560	AC	270	-60	108	33	34	1 21	1.7	1 metre @ 0.7g/t Au from 11 metres
including	271950	7130500	560	AC	270	-60	103	72 72	103 80	31 8	5.6 17.7	31 metres @ 5.6g/t Au from 72 metres (incl. 8 metres @ 17.7g/t Au from 72 metres)
HWAC1473	272000	7130500	560	AC	270	-60	107	12	30	0	17.7	NSA
HWAC1474	272050	7130500	560	AC	270	-60	113	1				NSA NSA
HWAC1475	272100	7130500	560	AC	270	-60	97	1				NSA
HWAC1476	272150	7130500	560	AC	270	-60	112					NSA
HWAC1477	272200	7130500	560	AC	270	-60	99					NSA
HWAC1478	272250	7130500	560	AC	270	-60	38					NSA
HWAC1479	272300	7130500	560	AC	270	-60	52	ļ				NSA
HWAC1480	272350	7130500	560	AC	270	-60	53	ļ	1			NSA
HWAC1481	270650	7130400	560	AC	270	-60	60	<u> </u>	-			NSA
HWAC1482	270750	7130400	560	AC	270	-60	65	-	1			NSA NSA
HWAC1483 HWAC1484	270700 270800	7130400 7130400	560 560	AC AC	270 270	-60 -60	65 69		1			NSA NSA
HWAC1484 HWAC1485	270800	7130400	560	AC	270	-60	75	 	 			NSA NSA
HWAC1486	270930	7130400	560	AC	270	-60	86	1				NSA NSA
HWAC1487	270950	7130400	560	AC	270	-60	71	1				NSA
	•					•			•			1

	Coordina	tes (MGA94 Zo	one 51)				Total	Depth	Depth			
Hole ID	Easting	Northing	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Depth	From	То	Intercept Width (m)	Grade (g/t)	Grade Summary/Comments
HWAC1488	(m)	(m)	, ,				(m)	(m) 2	(m) 6	4	1.7	4 metres @ 1.7g/t Au from 2 metres
and								11	12	1	0.7	1 metre @ 0.7g/t Au from 11 metres
and	271000	7130400	560	AC	270	-60	75	17	75	58	1.7	58 metres @ 1.7g/t Au from 17 metres (incl. 10
including								60	70	10	4.2	metres @ 4.2g/t Au from 60 metres)
HWAC1489	271050	7130400	560	AC	270	-60	78					NSA
HWAC1490 HWAC1491	271100 271150	7130400 7130400	560 560	AC AC	270 270	-60 -60	93 88					NSA NSA
HWAC1491	2/1130	7130400	300	AC	270	-00	00	16	20	4	0.9	4 metres @ 0.9g/t Au from 16 metres
and	271200	7130400	560	AC	270	-60	89	24	32	8	0.5	8 metres @ 0.5g/t Au from 24 metres
and								36	44	8	0.5	8 metres @ 0.5g/t Au from 36 metres
HWAC1493	271250	7130400	560	AC	270	-60	70	19	21	2	0.6	2 metres @ 0.6g/t Au from 19 metres
HWAC1494	271300	7130400	560	AC	270 270	-60	71					NSA NSA
HWAC1495 HWAC1496	271350 271400	7130400 7130400	560 560	AC AC	270	-60 -60	52 48					NSA NSA
HWAC1497	271450	7130400	560	AC	270	-60	48					NSA
HWAC1498	271500	7130400	560	AC	270	-60	41					NSA
HWAC1499	271550	7130400	560	AC	270	-60	46					NSA
HWAC1500	271600	7130400	560	AC	270	-60	57					NSA
HWAC1501	271650	7130400	560	AC	270 270	-60	51					NSA NSA
HWAC1502 HWAC1503	271700 271750	7130400 7130400	560 560	AC AC	270	-60 -60	62 71					NSA NSA
HWAC1504	271800	7130400	560	AC	270	-60	87					NSA
HWAC1505	271850	7130400	560	AC	270	-60	85					NSA
HWAC1506	271900	7130400	560	AC	270	-60	94	0	4	4	2.4	4 metres @ 2.4g/t Au from 0 metres
HWAC1507								0	4	4	0.6	4 metres @ 0.6g/t Au from 0 metres
and	271950	7130400	560	AC	270	-60	98	44	56	12	1.2	12 metres @ 1.2g/t Au from 44 metres
and	272000	7420400	500		270		424	84	92	8	2.2	8 metres @ 2.2g/t Au from 84 metres
HWAC1508 HWAC1509	272000 272050	7130400 7130400	560 560	AC AC	270 270	-60 -60	131 114					NSA NSA
HWAC1510	272100	7130400	560	AC	270	-60	102					NSA NSA
HWAC1511	272150	7130400	560	AC	270	-60	106					NSA
HWAC1512	272200	7130400	560	AC	270	-60	124					NSA
HWAC1513	272250	7130400	560	AC	270	-60	48					NSA
HWAC1514	271100	7130300	560	AC	270	-60	89					NSA
HWAC1515	271150	7130300	560	AC	270	-60	94	84	88	4	0.5	4 metres @ 0.5g/t Au from 84 metres
HWAC1516	271200	7130300	560	AC	270	-60	94	40		42	0.7	NSA
HWAC1517 HWAC1518	271250 271300	7130300 7130300	560 560	AC AC	270 270	-60 -60	100 75	48	60	12	0.7	12 metres @ 0.7g/t Au from 48 metres NSA
HWAC1519	270750	7130200	560	AC	270	-60	87					NSA
HWAC1520	270800	7130200	560	AC	270	-60	93					NSA
HWAC1521								8	9	1	0.5	1 metre @ 0.5g/t Au from 8 metres
and	270850	7130200	560	AC	270	-60	93	18	19	1	0.8	1 metre @ 0.8g/t Au from 18 metres
and								43	44	1	1.1	1 metre @ 1.1g/t Au from 43 metres
HWAC1522 and	270900	7130200	560	AC	270	-60	93	24	12 25	1	0.5 0.9	1 metre @ 0.5g/t Au from 11 metres
HWAC1523								28	36	8	1	1 metre @ 0.9g/t Au from 24 metres 8 metres @ 1.0g/t Au from 28 metres
and								41	42	1	1.1	1 metre @ 1.1g/t Au from 41 metres
and	270950	7130200	560	AC	270	-60	100	80	81	1	0.8	1 metre @ 0.8g/t Au from 80 metres
and								90	91	1	0.8	1 metre @ 0.8g/t Au from 90 metres
HWAC1524	271000	7130200	560	AC	270	-60	95	9	10	1	1.5	1 metre @ 1.5g/t Au from 9 metres
and HWAC1525								26	29	3	4.3	3 metres @ 4.3g/t Au from 26 metres
HWAC1525	271050 271100	7130200 7130200	560 560	AC AC	270 270	-60 -60	89 93					NSA NSA
HWAC1527	271100	7130200	560	AC	270	-60	93					NSA
HWAC1528	271200	7130200	560	AC	270	-60	91	1				NSA
HWAC1529	271250	7130200	560	AC	270	-60	93					NSA
HWAC1530	271300	7130200	560	AC	270	-60	60	32	36	4	0.5	4 metres @ 0.5g/t Au from 32 metres
HWAC1531	271350	7130200	560	AC	270	-60	62	ļ				NSA
HWAC1532	271400	7130200	560	AC	270	-60	62	 				NSA NSA
HWAC1533 HWAC1534	271450 271500	7130200 7130200	560 560	AC AC	270 270	-60 -60	67 51	1				NSA NSA
HWAC1535	271500	7130200	560	AC	270	-60	54	1				NSA NSA
HWAC1536	271600	7130200	560	AC	270	-60	58	1				NSA
HWAC1537	271650	7130200	560	AC	270	-60	54	<u> </u>				NSA
HWAC1538	271700	7130200	560	AC	270	-60	54					NSA
HWAC1539	271750	7130200	560	AC	270	-60	60					NSA
HWAC1540	271800	7130200	560	AC	270	-60	60	 				NSA NGA
HWAC1541 HWAC1542	271850 271900	7130200 7130200	560 560	AC AC	270 270	-60 -60	89 82	 				NSA NSA
HWAC1542 HWAC1543	271900 271950	7130200	560 560	AC AC	270	-60 -60	82	1				NSA NSA
HWAC1544								52	92	40	0.3	40 metres @ 0.3g/t Au from 52 metres (incl. 4
including	272000	7130200	560	AC	270	-60	107	64	68	4	1.0	metres @ 1.0g/t Au from 64 metres)
HWAC1545	272050	7130200	560	AC	270	-60	116	33	34	1	0.6	1 metre @ 0.6g/t Au from 33 metres
HWAC1546	272100	7130200	560	AC	270	-60	103	96	98	2	0.7	2 metres @ 0.7g/t Au from 96 metres
HWAC1547	272150	7130200	560	AC	270	-60	117	28	30	2	0.5	2 metres @ 0.5g/t Au from 28 metres
HWAC1548	271900	7130000	560	AC	270	-60	99	76	77	1	0.6	1 metre @ 0.6g/t Au from 76 metres

			1									
Hole ID	Coordina Easting	tes (MGA94 Zo	1	Hole	Azi	Dip	Total Depth	Depth From	Depth To	Intercept	Grade	Grade Summary/Comments
	(m)	(m)	RL (m)	Туре	(deg)	(deg)	(m)	(m)	(m)	Width (m)	(g/t)	,,
HWAC1549	271950	7130000	560	AC	270	-60	98					NSA
HWAC1550	272000	7130000	560	AC	270	-60	113	40	100	60	0.5	60 metres @ 0.5g/t Au from 40 metres (incl. 4
including HWAC1551	272050	7130000	560	AC	270	-60	110	80	84	4	3.5	metres @ 3.5g/t Au from 80 metres) NSA
HWAC1552	271850	7130000	560	AC	270	-60	75					NSA
HWAC1553	272150	7130000	560	AC	270	-60	117					NSA
HWAC1554	272200	7130000	560	AC	270	-60	105					NSA
HWAC1555	272250	7130000	560	AC	270	-60	116					NSA
HWAC1556	272300	7130000	560	AC	270	-60	71					NSA
HWAC1557 HWAC1558	272100 271750	7130000 7130550	560 560	AC AC	270 270	-60 -60	106 87					NSA NSA
HWAC1559	271800	7130550	560	AC	270	-60	97					NSA
HWAC1560	271850	7130550	560	AC	270	-60	122					NSA
HWAC1561	271900	7130550	560	AC	270	-60	115					NSA
HWAC1562								20	24	4	0.5	4 metres @ 0.5g/t Au from 20 metres
and	271950	7130550	560	AC	270	-60	123	68	84	16	2.2	16 metres @ 2.2g/t Au from 68 metres
and HWAC1563	272000	7130550	560	AC	270	-60	117	100	104	4	0.6	4 metres @ 0.6g/t Au from 100 metres NSA
HWAC1564	271850	7130300	560	AC	270	-60	81					NSA
HWAC1565	271900	7130300	560	AC	270	-60	93					NSA
HWAC1566	271950	7130300	560	AC	270	-60	102			-		NSA
HWAC1567	272000	7130300	560	AC	270	-60	105					NSA
HWAC1568	272050	7130300	560	AC	270	-60	114	1				NSA NGA
HWAC1569	272050	7130550	560 560	AC AC	270	-60 -60	119					NSA NSA
HWAC1570 HWAC1571	271900 271950	7130100 7130100	560 560	AC AC	270 270	-60 -60	86 83	1				NSA NSA
HWAC1571	271930	7130100	560	AC	270	-60	110					NSA NSA
HWAC1573	272050	7130100	560	AC	270	-60	100					NSA
HWAC1574	272100	7130100	560	AC	270	-60	106	84	88	4	0.5	4 metres @ 0.5g/t Au from 84 metres
HWAC1575	272150	7130100	560	AC	270	-60	86	28	32	4	1.0	4 metres @ 1.0g/t Au from 28 metres
HWAC1576	272200	7130200	560	AC	270	-60	117	108	112	4	1.7	4 metres @ 1.7g/t Au from 108 metres
HWAC1577	272250	7130200	560	AC	270	-60	123					NSA
HWAC1578 HWAC1579	272300 272350	7130200 7130200	560 560	AC AC	270 270	-60 -60	46 41					NSA NSA
HWAC1579	272330	7130200	560	AC	270	-60	74					NSA NSA
HWAC1581	271800	7130150	560	AC	270	-60	60					NSA
HWAC1582	271850	7130150	560	AC	270	-60	98					NSA
HWAC1583	271900	7130150	560	AC	270	-60	74	28	32	4	1.3	4 metres @ 1.3g/t Au from 28 metres
and								72	74	2	0.7	2 metres @ 0.7g/t Au from 72 metres
HWAC1584	271950	7130150	560	AC	270	-60	82					NSA
HWAC1585 HWAC1586	272000 272050	7130150 7130150	560 560	AC AC	270 270	-60 -60	94 112					NSA NSA
HWAC1587	272100	7130150	560	AC	270	-60	117	96	100	4	0.5	4 metres @ 0.5g/t Au from 96 metres
HWAC1588	272150	7130150	560	AC	270	-60	136	40	44	4	0.5	4 metres @ 0.5g/t Au from 40 metres
HWAC1643								27	28	1	0.6	1 metre @ 0.6g/t Au from 27 metres
and	270900	7130450	560	AC	90	-60	75	48	49	1	1	1 metre @ 1g/t Au from 48 metres
and								70	71	1	0.5	1 metre @ 0.5g/t Au from 70 metres
HWAC1644	270950	7130450	560	AC	90	-60	68					NSA NSA
HWAC1645 HWAC1646	271000 271050	7130450 7130450	560 560	AC AC	90 90	-60 -60	69 92	24	25	1	0.6	NSA 1 metre @ 0.6g/t Au from 24 metres
HWAC1647	271100	7130350	560	AC	90	-60	93	2-7	23	-	0.0	NSA
HWAC1648	271050	7130350	560	AC	90	-60	95					NSA
HWAC1649								44	49	5	0.7	5 metres @ 0.7g/t Au from 44 metres (incl. 1
including	271000	7130350	560	AC	90	-60	93	44	45	1	2.0	metre @ 2.0g/t Au from 44 metres)
and	2700	74205					0.0	65	67	2	0.6	2 metres @ 0.6g/t Au from 65 metres
HWAC1650 HWAC1651	270950 271050	7130350 7130300	560 560	AC AC	90 90	-60 -60	86 96	-				NSA NSA
HWAC1651 HWAC1652			560	AL	30	-60	96	40	41	1	0.6	NSA 1 metre @ 0.6g/t Au from 40 metres
and	271000	7130300	560	AC	90	-60	102	51	54	3	0.8	3 metres @ 0.8g/t Au from 51 metres
HWAC1653	270950	7130300	560	AC	90	-60	106	20	27	7	0.7	7 metres @ 0.7g/t Au from 20 metres
HWAC1654	271150	7130250	560	AC	90	-60	101					NSA
HWAC1655	271100	7130250	560	AC	90	-60	102					NSA
HWAC1656	271050	7130250	560	AC	90	-60	98					NSA
HWAC1657	271000	7130250	560	AC	90	-60	105					NSA NGA
HWAC1658 HWAC1659	271200 271150	7130150 7130150	560 560	AC AC	90 90	-60 -60	81 89					NSA NSA
HWAC1660	271150	7130150	560	AC AC	90	-60	89 85	 				NSA NSA
HWAC1661	271100	7130150	560	AC	90	-60	96	89	90	1	3.2	1 metre @ 3.2g/t Au from 89 metres
HWAC1662	271250	7130100	560	AC	90	-60	83					NSA
HWAC1663	271200	7130100	560	AC	90	-60	90					NSA
HWAC1664	271150	7130100	560	AC	90	-60	81					NSA
HWAC1665	271100	7130100	560	AC	90	-60	41					NSA
HWAC1666	271300	7130050	560	AC	90	-60	75	1				NSA NGA
HWAC1667 HWAC1668	271250 271200	7130050 7130050	560 560	AC AC	90 90	-60 -60	82 84					NSA NSA
HWAC1669	271200	7130050	560	AC AC	90	-60	42					NSA NSA
	_, 1130	. 200000	555					Ī.		1	1	

	Coordina	tes (MGA94 Zo	one 51)	Hole	Azi	Dip	Total	Depth	Depth	Intercent	Grade	
Hole ID	Easting (m)	Northing (m)	RL (m)	Туре	(deg)	(deg)	Depth (m)	From (m)	To (m)	Intercept Width (m)	(g/t)	Grade Summary/Comments
HWAC1670	271400	7129950	560	AC	90	-60	65	63	65	2	0.6	2 metres @ 0.6g/t Au from 63 metres
HWAC1671	271350	7129950	560	AC	90	-60	78					NSA
HWAC1672	271300	7129950	560	AC	90	-60	81					NSA
HWAC1673	271250	7129950	560	AC	90	-60	76					NSA
HWAC1674	271200	7129950	560	AC	90	-60	63					NSA
HWAC1675	271450	7130000	560	AC	90	-60	57					NSA
HWAC1676	271400	7130000	560	AC	90	-60	58					NSA
HWAC1677	271350	7130000	560	AC	90	-60	57					NSA
HWAC1678	271300	7130000	560	AC	90	-60	78					NSA
HWAC1679	271250	7130000	560	AC	90	-60	67					NSA
HWAC1680	271200	7130000	560	AC	90	-60	70	32	36	4	1.1	4 metres @ 1.1g/t Au from 32 metres
HWAC1681	271150	7130000	560	AC	90	-60	42					NSA
HWAC1682	271100	7130000	560	AC	90	-60	61					NSA
HWAC1683	271050	7130000	560	AC	90	-60	66					NSA
HWAC1684	271000	7130000	560	AC	90	-60	88					NSA
HWAC1685	270950	7130000	560	AC	90	-60	94					NSA
HWAC1686	270900	7130000	560	AC	90	-60	89					NSA
HWAC1687	270850	7130000	560	AC	90	-60	83					NSA
HWAC1688	271500	7130000	560	AC	270	-60	54					NSA
HWAC1689	271550	7130000	560	AC	270	-60	63					NSA
HWAC1690	271600	7130000	560	AC	270	-60	42					NSA
HWAC1691	271650	7130000	560	AC	270	-60	51					NSA
HWAC1692	271700	7130000	560	AC	270	-60	67					NSA
HWAC1693	271750	7130000	560	AC	270	-60	55					NSA
HWAC1694	271800	7130000	560	AC	270	-60	66					NSA
HWAC1695	271400	7129900	560	AC	90	-60	58					NSA
HWAC1696	271350	7129900	560	AC	90	-60	79					NSA
HWAC1697	271300	7129900	560	AC	90	-60	84	44	48	4	1.3	4 metres @ 1.3g/t Au from 44 metres
HWAC1698	271250	7129900	560	AC	90	-60	78					NSA
HWAC1699	271200	7129900	560	AC	90	-60	72					NSA
HWAC1700	271150	7129900	560	AC	90	-60	69					NSA
HWAC1701	271100	7129900	560	AC	90	-60	89					NSA
HWAC1702	271000	7129800	560	AC	270	-60	99					NSA
HWAC1703	271050	7129800	560	AC	270	-60	82					NSA

^{*}Significant intercepts were based on a single metre intercept grading greater than 0.5 g/t $\mathrm{Au}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$

APPENDIX B – JORC Tables

JORC Table 1 – Horse Well

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	numbered SKA**** prefixed calico bag in 4 metre composites. Four metre composite samples ranged in weight from 2.5-3kg. • The 1m A-bag splits were tied and stored in water-proof green bags at the
I		All drilling (prenx mixe) and sampling was undertaken in all industry standard

Criteria	JORC Code explanation	Commentary
		 AC hole samples were collected on a 1 metre basis from a cone splitter on the drill rig cyclone and ground dumped in rows of 20 metres. Each metre was spear sampled using an angled 50mm PVC pipe and placed in a prenumbered SKA**** prefixed calico bag in 4 metre composites. These four metre composite samples ranged from 2.5-3kg. Standard reference material was inserted into every 50th pre-numbered SKA**** prefixed bag. The independent laboratory pulverises the entire sample for analysis as described below.
		Geophysics
		 Historic gravity and magnetic data have been re-processed to produce constrained 3D inversions. The magnetic data is from the Horse Well survey conducted by Great Central Mines Ltd in 1997. The survey utilized 50m spaced lines, oriented E-W, with a nominal flying height of 40m. The ground gravity data is from the Horse Well North survey (contractor ID P2021085) which was acquired in 2021. This survey was acquired on a square grid with nominal station spacing of 200m. The survey used five Scintrex CG-5 instruments for gravity measurements, with positional data acquired using GNSS DGPS operating in post-process kinematic mode. Magnetic Susceptibility measurements were collected at one metre intervals
		utilizing a KT-10 instrument. At the start of each hole, the KT-10 instrument was calibrated/checked against a reference material before collecting 1m interval data from sample piles.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Aircore drilling utilising the Bostech Aircore Core System (85-87mm). Rotary polycrystalline diamond composite (PDC) drill bits were utilized at the top of fresh rock, or where ground was too hard for the standard aircore bit to penetrate. Rotary hammer drill bits were used sparingly where veining prevented both the PDC and standard AC drill bits from penetrating. Diamond drilling is being undertaken by Terra Resources, with a variety of bit sizes used. Drilling from surface commenced with a PQ bit and cased off into HQ whereas other holes commence with HQ. Diamond holes are surveyed using a Reflex EZ-Gyro North Seeking multishot survey tool. Diamond drill core is oriented using an Axis Champ Orientation tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC samples were visually assessed for recovery. Samples were considered representative with generally good recovery. Sample recovery was recorded per metre drilled. Samples were dry. Sample condition is recorded per metre drilled. No sample bias is observed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Aircore holes were logged qualitatively and quantitatively on a 1m basis. Qualitative: lithology, alteration, structure. Quantitative: vein percentage; mineralisation (sulphide) percentage. All holes were logged for the entire length of hole. All drilled metres for each AC hole were chipped, archived and photographed.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ 	 AC chips were rotary split, sampled dry and recorded at the time of logging. OREAS certified reference material (CRM) was inserted at a ratio of 1:50 throughout sampling. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.

Criteria	JORC Code explanation	Commentary
	material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled.	 Field Duplicates and CRMs were submitted to the lab using unique Sample IDs at a ratio of 1:50 throughout sampling. The entire 2.5-3kg AC 4m composite or 2.5-3kg 1m split was sent to Intertek Laboratory, Maddington WA. All samples were sorted and dried at 105 C, crushed to ~3 mm and linearly split, ensuring jars are filled to 85 % full. Samples were then analysed by Photon-Assay (PAAU002) method with detection limits of 0.02-350 ppm. Intertek separately analysed 1 CRM in every 50 samples as well as 1 duplicate assay in every 50 samples as part of standard QAQC protocol for Photon analysis. The sample size was appropriate for the grain size of sampled material. No diamond core results are reported in this announcement. 2021 AC chips were cone split, sampled dry and recorded at the time of logging. The entire ~3kg AC composite sample was pulverized to 75µm (85% passing). Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratory's discretion. Duplicate samples taken every 50th sample. The sample size was appropriate for the grain size of sampled material.
		 Geophysics Geophysical inversion has been carried out on the Horse Well gravity and magnetic datasets by Terra Resources consultants, using Voxi software. Gravity inversion used a core mesh size of 100x100x50m. the input data was the Bouguer gravity computed with a Bouguer density of 2.67g/cc. Data was upward continued and subsampled to match the inversion mesh, and residualised using a linear slope method. The inversion results were unconstrained. Magnetic inversion used a core mesh size of 10x10x5m, the input data was the TMI (total magnetic intensity) data. Data was subsampled to match the inversion mesh, and residualised using a linear slope method. The magnetic inversions were constrained using a drillhole model, created using the

Criteria	JORC Code explanation	Commentary
		magnetic susceptibility supplied from field measurements using handheld instruments.
		 Magnetic vector inversions have also been computed for the Marwari anomalies using the Voxi MVI methodology. MVI inversion used a core mesh size of 10x10x5m, the input data was the TMI (total magnetic intensity) data. Data was subsampled to match the inversion mesh, and residualised using a linear slope method. The MVI inversions are unconstrained.
Quality of	The nature, quality and appropriateness of the assaying and laboratory	2023
assay data	procedures used and whether the technique is considered partial or total.	Photon Assay is an appropriate technique adopted for gold analysis.
and laboratory	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and	• QA samples were inserted at a combined ratio of 1:25 throughout. Field duplicates were collected at a 1:50 ratio. OREAS certified reference material
tests	model, reading times, calibrations factors applied and their derivation, etc.	(CRM) was inserted at a ratio of 1:50. The grade ranges of the CRMs were
	• Nature of quality control procedures adopted (eg standards, blanks,	
	duplicates, external laboratory checks) and whether acceptable levels of	reference material type was selected sased on the geology, weathering, and
	accuracy (ie lack of bias) and precision have been established.	analysis method of the sample.
		• All samples were sorted and dried at 105 C, crushed to ~3 mm and linearly split, ensuring jars are filled to 85 % full. Samples were then analysed by
		Photon-Assay (PAAU002) method with detection limits of 0.02-350 ppm.
		Intertek separately analyse 1 CRM in every 50 samples as well as 1 duplicate
		assay in every 50 samples as part of standard QAQC protocol for Photon analysis.
		Magnetic Susceptibility measurements were collected at one metre intervals
		utilizing a KT-10 instrument. At the start of each hole, the KT-10 instrument
		was calibrated/checked against a reference material before collecting 1m interval data from sample piles.
		 A handheld Olympus Vanta XRF instrument was utilised to aid the at-rig
		geologist determining downhole lithologies. The instrument was calibrated
		at the start of each analysis session, with a QC reading taken on alternating
		Certified Reference Materials (Blank and OREAS45d) at a ratio of 1:20
		samples. Handheld XRF readings were taken on pulverized material from dry bottom of hole samples systematically, and from dry samples throughout a
		hole where the geologist determined geochemical data was necessary to

Criteria	JORC Code explanation	Commentary
		determine lithology. • No diamond drilling results are reported in this announcement.
		 Fire assay (50g), total technique, appropriate for gold. AAS determination, appropriate for gold. Certified reference material standards, 1 in 50 samples. Blanks: A lab barren quartz flush is requested following a predicted high grade sample (i.e. visible gold). Lab: Random pulp duplicates were taken on average 1 in every 10 samples. Fire assay is a total digest technique and is considered appropriate for gold. Certified reference material standards, 1 in 50 samples. Accuracy and precision levels have been determined to be satisfactory after analysis of these QAQC samples.
		 Geophysics One new gravity/GNSS control station, 202108500001 "Horse Well North" and one existing gravity/GNSS control station, 201712500001 "Millrose Homestead" were used to control all field observations throughout the P2021085 survey. Repeat gravity stations were taken at a rate of 3% in order to verify measurement accuracy and repeatability.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Logging and sampling were recorded directly into LogChief, utilising lookup tables and in-file validations, on a Toughbook by a geologist at the rig. Logs, handheld XRF geochemical data, Magnetic Susceptibility data and sampling were imported daily into Micromine for further validation and geological confirmation. When received, assay results were plotted on section and verified against neighbouring drill holes. From time to time, assays will be repeated if they fail company QAQC protocols. All sampling was routinely inspected by senior geological staff. Significant intersections were inspected by senior geological staff and STK corporate

Criteria	JORC Code explanation	Commentary
		 Data was validated daily by the STK Database Administrator, with import validation protocols in place. Data was exported daily to Mitchell River Group and externally validated and imported to the SQL database. No adjustments have been made to assay data. Data is managed and hosted by Mitchell River Group.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill collars were surveyed using a GARMIN GPSMap64 with expected relative accuracy of approximately 3m. Holes are located in MGA Zone 51. RLs were assigned a nominal value of 570m during drilling and corrected during data import by draping on the DGPS-generated surface DTM. Data points for creation of the surface topography were collected by DownUnder Surveys in 2022 on a 50m grid spacing across the entire Horse Well Region. Collar locations are to be updated at a later date by DGPS.
		 Geophysics The aeromagnetic data was acquired in AGD84 datum, AMG (Zone 51) coordinate system. This data has been reprojected to GDA94, MGA Zone 51 for magnetic inversion work. The gravity data was acquired in GDA94 datum, MGA (Zone 51) coordinate system.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Aircore holes were completed on a 50 metre (East-West) by 200 metre(North-South) grid spacing. Infill aircore holes on a 50 metre (East-West) by 100 metre (North-South) grid spacing are completed where deemed necessary for geological and grade continuity understanding. Each drill hole was positioned to an Azimuth of 270 degrees at a dip of -60 degrees and drilled to blade refusal. 1 metre split samples were collected from the rotary splitter located directly below the drill rig cyclone and stored at the drill pad. 4 metre composite samples were collected throughout each hole. Composite samples are initially submitted to the laboratory, with 1 metre sample splits submitted if 4 metre composite samples are regarded as anomalous in gold (i.e., 4m assays returned are > 0.2 g/t Au). No diamond drilling results are reported in this announcement.

Criteria	JORC Code explanation	Commentary
		Aircore holes were completed on 100 metre (east-west) and 200 metre (north-south spacings). Each hole was positioned 270 degrees to the west at a -60 degree dip and drilled to blade refusal. Further, closer spaced drilling is required to fully establish the degree of geological and grade continuity. Samples were composited over four metre intervals.
		 Geophysics Magnetic data was acquired with a line spacing of 50 metres. Grav data was acquired with a station spacing of 200 metres.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Further drilling is required to fully evaluate the initial aircore drilling results.
		 Geophysics Magnetic data has been collected along lines-oriented perpendicular to the local direction of geologic strike. Gravity data has been collected on an equispaced square grid, which minimizes
Sample	The measures taken to ensure sample security.	bias to the geophysical data. Strickland Drilling
security		 Sampling was recorded in both hardcopy and digital format. These were collected by company personnel and delivered directly to the laboratory via STK personnel.
		 Pre-Strickland Drilling The data was originally maintained by Eagle Mining Corporation and forwarded to Normandy Jundee Operation.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sampling procedures throughout the drilling process were monitored and supervised by senior geological staff. Historic data has been validated by the Mitchell River Group and is deemed
		accurate and precise.
		All results reported by the Laboratory and data exported by Strickland Metals
		is externally validated by the Mitchell River Group prior to importing into the database.
		Monthly QAQC reports and recommendations are generated for all drilling,
		geochemical and assay data by Mitchell River Group.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Horse Well is located on 100% owned STK tenure (tenement ID) E69/1772. L11 Capital Pty Ltd holds a 1% gross revenue royalty over the above tenure.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Exploration prior to Alloy Resources in the region was minimal and limited to shallow RAB and air-core drilling completed in the mid – 1990s, all of which had been sampled, assayed, and logged and records held by the Company. This early work, including aeromagnetic data interpretation, was focused on gold and provided anomalous samples which was the focus of this period of exploration.
Geology	Deposit type, geological setting and style of mineralisation.	 Horse Well is an Archean aged gold project with common host rocks and structures related to mesothermal orogenic gold mineralisation as found throughout the Yilgarn Craton of Western Australia. Marwari has similar geological characteristics to the Geita gold deposit located in north-western Tanzania.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Refer to tabulations in the body of this announcement. Drillholes with >0.5g/t Au over 4 metre composite and 1 metre split samples are summarized in Table 2 and 3 of Appendix A. A summary of all drill hole collar details, completed to date, is recorded in Appendix A. No diamond drilling results are reported in this announcement. A summary on the status of diamond drilling can be found within Table 1 of Appendix A within the main body of the announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No top-cuts have been applied when reporting results. The primary gold determination is reported where any secondary assaying does not differ significantly from the primary. The AC intervals are taken as values >0.5g/t Au with maximum internal dilution of 3 metres. No metal equivalent values are used for reporting exploration results. No diamond drilling results are reported in this announcement.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Further drilling is required to fully evaluate these initial AC drill intercepts. AC drilling has been conducted perpendicular to regional structures. AC drilling has been spaced at 50 metres (East-West) to ensure adequate coverage across regional structures. Downhole AC intercept lengths are reported. No diamond hole results are reported in this announcement. Visual observations on alteration, sulphide content and veining were undertaken by STK's senior exploration geologist who is overseeing the drill program.

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Please refer to the main body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	A summary of exploration results are contained within Annexure A.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material information has been included in the body of the text.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 RC drilling at Konik to test the main mineralised trend, below the Base of Complete Oxidation (BOCO). Completion of 40 x 40m spaced RC drilling across the shallow up dip surface projection at Marwari. Completion of the current diamond drill program. Micro XRF analysis on the drill core from Marwari to understand the timing on alteration and sulphides in relation to the gold mineralisation event. Petrogeophysical analysis on the diamond drill core ore zones across Marwari to determine the characteristics of the ore. Further diamond drilling to extend and map out the extents of mineralisation at Marwari.